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We investigate spin-order of ultracold bosons in an optical lattice by means of dynamical mean-field theory.
A rich phase diagram with anisotropic magnetic order is found, both for the ground state and at finite tem-
peratures. Within the Mott insulator, a ferromagnetic to antiferromagnetic transition can be tuned using a
spin-dependent optical lattice. In addition we find a supersolid phase, in which superfluidity coexists with
antiferromagnetic spin order. We present detailed phase diagrams at finite temperature for the experimentally
realized heteronuclear 87Rb-41K mixture in a three-dimensional optical lattice.
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I. INTRODUCTION

Ultracold atoms in optical lattices give access to studies
of quantum magnetism with unprecedented control and pre-
cision. Whereas efficient cooling of fermionic atoms in opti-
cal lattices remains an experimental challenge, mixtures of
bosonic atoms can more easily be cooled to the relevant tem-
perature scales, thus realizing the Bose-Hubbard model1,2

with multiple species. Indeed, recent experiments have al-
ready succeeded in loading a heteronuclear mixture into an
optical lattice.3 The interaction between the two species has
been addressed by means of a Feshbach resonance,4 which
offers a direct way of mapping out the phase diagram as a
function of the interspecies interaction strength. Moreover,
superexchange processes have been directly observed in a
mixture of two-component bosons.5

Whereas the phase diagram of spinless bosons is qualita-
tively well captured by Gutzwiller mean-field theory,6 for a
multispecies system dynamical correlations are important,
because they give rise to spin order. Previous theoretical
studies have either discussed the weak tunneling limit7,8 or
performed expansions around mean-field9 or the strong-
coupling limit.10,11 Numerical nonperturbative methods are
available in one spatial dimension,12,13 and quantum Monte
Carlo simulations were very recently performed for two spa-
tial dimensions.14 In this article we focus on the generic
three-dimensional situation where dynamical mean-field
theory �DMFT� has been established15 as a highly reliable,
nonperturbative approach to strongly correlated fermionic
quantum systems. Here we apply the bosonic version of
DMFT �BDMFT�, as recently introduced by Byczuk and
Vollhardt.16 BDMFT treats condensed and normal bosons on
equal footing. It is nonperturbative and hence can be applied
within the full range from small to large couplings. The con-
trol parameter is the lattice coordination number z, i.e., the
theory becomes exact in infinite dimensions. We present the
BDMFT equations as a controlled 1 /z expansion, up to sub-
leading order. Our derivation is thus different from the origi-
nal proposal,16 in which BMDFT is constructed as a well-
defined theory in strictly infinite dimensions, which requires
a different scaling of superfluid and normal parts of the ac-
tion. In contrast, our derivation is based on a uniform scaling
�1 /z of the bosonic hopping amplitude. To leading order

this yields Gutzwiller mean-field theory,6 while from the sub-
leading terms of order O�1 /z� we obtain the BDMFT equa-
tions. We thus regard BDMFT as an expansion in 1 /z around
Gutzwiller, which in our opinion is the most natural view-
point.

In practice, BDMFT turns out to be an efficient and fast
scheme, which allows to map out phase diagrams with high
resolution. Moreover, it not only allows for nonperturbative
calculation of local observables, but also the spectral func-
tion, relevant for RF spectroscopy, is directly accessible.

While in Ref. 16 calculations were only performed for a
simplified lattice model with partially immobile bosons, here
we apply bosonic DMFT to the full two-component Bose-
Hubbard model in finite spatial dimensions. Besides the su-
perfluid, we identify XY-ferromagnetic and
Z-antiferromagnetic phases, in which translational symmetry
is spontaneously broken and anisotropic magnetic order
arises. Moreover, we find a supersolid phase where superflu-
idity coexists with antiferromagnetic spin order. We investi-
gate the stability of these phases against thermal fluctuations,
paying special attention to the experimentally relevant case
of a heteronuclear 87Rb-41K mixture in a three-dimensional
optical lattice.3

II. METHOD

We first describe how BDMFT can be implemented for
the Bose-Hubbard Hamiltonian. In particular we identify an
Anderson Hamiltonian that reproduces the local effective ac-
tion and allows us to solve the BDMFT self-consistency
problem.

The starting point for our investigation is the multispecies
single-band Hubbard model within tight-binding approxima-
tion

Ĥ = − �
�ij�,�

�t�b̂i�
† b̂j� + H.c.� +

1

2 �
i,��

U��n̂i��n̂i� − ���� , �1�

which provides an accurate description of bosonic atoms in a
sufficiently strong optical lattice. Here t� are �species-
dependent� hopping amplitudes, U�� contains the inter- and
intraspecies interactions and �ij� indicates a summation over
nearest neighbor sites i and j. In the spirit of the cavity
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derivation of the fermionic DMFT equations15 we consider a
single lattice site �called the “impurity site”� and formally
integrate out all the other degrees of freedom. This defines
the effective action of the impurity site as

Zimp =
Z

Z�0� =� �
�

Db0,�
� Db0,�e−Simp, �2�

where Z is the full partition function and Z�0� is the partition
function of the cavity system without the impurity. For rea-
sons of brevity we derive the effective impurity action and
perform the numerical calculations in this article for the case
of a Bethe lattice �Cayley tree�, which in infinite dimensions
�z→�� has a semicircular density of states:15 �0���
=	4zt2−�2 /2�zt2. The use of the semicircular DOS in our
calculations has merely technical reasons because this choice
simplifies the DMFT equations. Our obtained results remain

qualitatively similar for any symmetric DOS representing a
bipartite lattice. This is in particular true for the three-
dimensional cubic lattice, which has only mild Van Hove
singularities. For fermionic DMFT it has been established
that the agreement between results on the Bethe lattice and
the cubic lattice is not only qualitative, but also quantitative,
with a typical accuracy of around ten percent. We find that
the same is true for BDMFT, as we show below for the case
of single component bosons, where we compare the BDMFT
results with numerically exact quantum Monte Carlo results.

In deriving the effective impurity action, we first formally
rescale all hopping parameters as t�= t�

� /z, such that 1 /z ap-
pears as the small parameter in the theory. Based on the
linked cluster theorem, the action of the impurity site up to
subleading order in 1 /z is then obtained in the standard
way15 as

Simp = �
0

�

d	d	��
��


b0�
� �	�

b0��	�
�T���	� − ������ + t�t� �

�0i�,�0j�
G��,ij

1 �	,	�� t�t� �
�0i�,�0j�

G��,ij
2 �	,	��

t�t� �
�0i�,�0j�

G��,ij
2� �	�,	� �− �	� − ������ + t�t� �

�0i�,�0j�
G��,ij

1 �	�,	� 
b0��	��
b0�

� �	��
�

+ �
0

�

d	�1

2�
��

U��n0��	��n0��	� − ���� − �
�0i�,�

t��b0�
� �	�
i,��	� + b0��	�
i,�

� �	��� . �3�

Here we have defined


i,��	� = �bi,��	��0, �4�

as the superfluid order parameters, and

G��,ij
1 �	,	�� = − �bi,��	�bj,�

� �	���0 + 
i,��	�
 j,�
� �	�� , �5�

G��,ij
2 �	,	�� = − �bi,��	�bj,��	���0 + 
i,��	�
 j,��	�� , �6�

as the diagonal and off-diagonal parts of the connected
Green’s functions, respectively. The notation �¯ �0 means
that the expectation value is taken in the cavity system ex-
cluding the impurity site. For finite z the action �3� coincides
with the one previously derived in Ref. 16. Note however,
that our derivation is different. In the original proposal,16

BMDFT is constructed as a well-defined theory in strictly
infinite dimensions, which requires different scaling of su-
perfluid and normal parts of the action. In contrast, our deri-
vation is based on a uniform scaling �1 /z of the bosonic
hopping amplitude, since we focus on finite dimensions and
our goal is to make direct contact with the three-dimensional
experimental situation. The terms involving Green’s func-
tions in the action �3� are of order O�1 /z�, since they come
with two factors of t��1 /z and one summation over neigh-
boring sites, which gives a factor z. All the other terms are of
order O�1�; for the last term in the action this follows from
the fact that it involves one factor of t��1 /z which cancels
against the factor z arising from the summation over neigh-

boring sites. Therefore to leading order the action �3� yields
Gutzwiller mean-field theory,6 while by including the sub-
leading terms of order O�1 /z� we obtain the BDMFT equa-
tions. Hence we regard BDMFT as an expansion in 1 /z
around Gutzwiller; this is in our opinion the most natural
viewpoint.

To proceed, expectation values in the cavity system need
to be identified with those on the impurity site, in order to
obtain a closed self-consistency loop. Since sites at the edge
of the cavity have one neighbor less compared to the impu-
rity site �see Fig. 1�, simply identifying the expectation val-
ues yields an error of order 1 /z. For the Green’s functions
this poses no problem, because they already appear at sub-
leading order in the action, but it yields a relevant correction
to the superfluid order parameter and turns out to be essential

FIG. 1. �Color online� Illustration of the cavity method. Sites
which are connected to the impurity �colored greenish� have one
neighbor less once the impurity is removed.
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for quantitatively accurate predictions of the phase diagram.
Details regarding the implementation will be given below.

We now turn to the solution of the effective action. This
we do in the spirit of the exact diagonalization �ED� solution
of fermionic DMFT.15 We represent the effective action �3�
by an Anderson impurity Hamiltonian ĤA:

ĤA = − �
�

zt��
�
�b̂� + h.c.� +

1

2�
��

U��n̂��n̂� − ���� − �
�

��n̂�

+ �
l

�lâl
†âl + �

l,�
�V�,lâl

†b̂� + W�,lâlb̂� + H.c.� . �7�

The chemical potential and interaction term are directly
inherited from the Hubbard Hamiltonian. The Gutzwiller
term represents the bath of condensed bosons with superfluid
order parameters 
� for every component. The bath of nor-
mal bosons is modeled by a finite number of orbitals with
creation operators âl

† and energies �l. These orbitals are
coupled to the impurity via normal-hopping amplitudes V�,l
and anomalous-hopping amplitudes W�,l. The anomalous
hopping terms are needed to generate the off-diagonal ele-
ments of the hybridization function. We define the following
hybridization functions:

���
1 �i�n� � − �

l

V�,lV�,l

�l − i�n
+

W�,lW�,l

�l + i�n
, �8�

���
2 �i�n� � − �

l

V�,lW�,l

�l − i�n
+

V�,lW�,l

�l + i�n
. �9�

Integrating out the orbitals leads to the same effective action
�3�, if the following identification is made:

zt�t�G��
1,2�i�n�=̂���

1,2�i�n� . �10�

These self-consistency conditions are completed by the con-
dition for the superfluid order parameter


� = �b̂��0
z−1. �11�

The notation �¯ �0
z−1 means that the expectation value is cor-

rected for the missing neighbor on the sites adjacent to the
impurity. Since this is a correction of order O�1 /z� and 1 /z is
small, this correction is implemented by means of perturba-
tion theory in 1 /z. Equations �10� and �11� thus constitute the
set of BDMFT self-consistency conditions.

The self-consistency loop is solved as follows: starting
from an initial choice for the superfluid order parameter and
the Anderson parameters, the Anderson Hamiltonian is con-
structed in the Fock basis and diagonalized to obtain the
eigenstates and eigenenergies. New superfluid order param-

eters are then obtained from 
�= �b̂��0
z−1. The eigenstates and

energies also allow us to calculate the Green’s functions.
Subsequently, new Anderson parameters are obtained by fit-
ting the hybridization functions to their corresponding
Green’s functions according to Eq. �10�, which is done by a
conjugate gradient method. With this new Anderson Hamil-
tonian the procedure is iterated until convergence is reached.

We note here that this derivation is independent of tem-
perature. This implies that we cannot only determine ground

state properties, but also obtain information about the ther-
modynamics of lattice bosons, as we will show in the fol-
lowing results. Similar to fermionic DMFT this raises the
question how BDMFT deals with situations with broken
symmetries, in which case Goldstone modes are present in
the spectrum. Indeed, the gapless long wavelength excita-
tions are absent from the DMFT spectrum.15 However, since
in three dimensions the spectral weight of the Goldstone
mode is finite and generally small, this approximation can be
justified and does not prohibit qualitative agreement between
�B�DMFT results and more exact methods �if available�,
even in symmetry-broken states.

III. RESULTS

A. Single component bosons

We now first apply BDMFT for the case of single com-
ponent bosons, in which case we can compare the results
with numerically exact quantum Monte Carlo data17 and
strong coupling expansions18,19 on the cubic lattice, and with
the exact solution on the Bethe lattice.20 Solving the BDMFT
equations for the single-component Bose-Hubbard model
leads to an extension of the Mott-insulating lobes compared
to the mean-field results �see Fig. 2�. The agreement with the
exact results on the Bethe lattice20 is very good: for the low-
est Mott lobe the phase boundaries agree within a few per-
cent, whereas for the higher Mott lobes the agreement is
even better. The predicted shift on the cubic lattice is slightly
larger,17–19 which is due to the different lattice structure. This
quantitative agreement with the exact solution clearly shows
that the applied 1 /z expansion is a very good approximation
for a three-dimensional system with z=6. It is important to
note that to obtain this result the 1 /z correction of the super-
fluid order parameter discussed in the previous section is
crucial.

Besides this quantitative agreement regarding the bound-
ary of the Mott insulating lobes, it is also important to note

FIG. 2. �Color online� Single component phase diagram for
various temperatures as obtained by BDMFT. In the inset: number
fluctuations for density n=1 and T=0. The lattice coordination
number is chosen as z=6.
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that BDMFT predicts nonzero number fluctuations in the
Mott insulator, as shown in the inset of Fig. 2. The number
fluctations are clearly finite in the Mott state and decay as
1 /U for large U. This is in contrast to the Gutzwiller mean-
field result, where number fluctuations strictly vanish within
the Mott state. Since these finite fluctuations in the Mott state
are essential for resolving spin order in the case of multicom-
ponent mixtures, spin order cannot be resolved within
Gutzwiller. In contrast, the BDMFT contains number fluc-
tuations in the Mott insulating state and is able to describe
spin order as we describe in the following subsection.

B. Two-component bosons

The two-component Bose-Hubbard model has a very rich
phase diagram, because additional spin order exists in the
Mott phase. Here we focus on the situation that the total
particle density is fixed at one boson per site. In the strong
coupling limit, i.e., for t�U��, the system can be mapped to
a spin model, which predicts the existence of a
Z-antiferromagnet and a XY-ferromagnetic phase.7,8 In terms

of the particle creation/annihilation operators b̂1 , b̂2, all the

insulating phases have the property that �b̂1�= �b̂2�=0. The
Z-antiferromagnetic phase breaks the translational symmetry
and is defined by the antiferromagnetic order parameter �af

�

= �n�,�−n�̄,�� being nonzero, where � denotes the component

and � ��̄=−�� the sublattice. The correlator �b̂1
†b̂2� vanishes

in the Z-antiferromagnetic phase. The XY-ferromagnet is de-

fined by the local correlator �b̂1
†b̂2� being nonzero, and is also

termed a counterflow superfluid. This state does not break
the translational symmetry and hence �af

� =0.
At weaker coupling the spin model breaks down, because

quantum fluctuations become important. A fluctuation
calculation9 and strong coupling expansion10 have extended
the spin model results to weaker coupling, where a transition
to a superfluid phase �b̂1� , �b̂2��0 takes place. The super-
fluid does not break the translational symmetry ��af

� =0� but
shows XY ordering: ��b̂1

†b̂2��� ��b̂1
†��b̂2��.

We now investigate this system by means of BDMFT
which allows us to study the full range from weak to strong
coupling and effects of finite temperature. We first study the
case that the intraspecies interactions U=U1=U2 are equal
and much larger than the interspecies interaction U12U.
We moreover vary the hopping amplitudes t1 and t2. The
condition nb+nd=1 is enforced by the choice of the chemical
potential �1=�2=U12 /2. This has the consequence that the
relative density of the two components is changing through-
out the phase diagram: the species with a higher hopping
constant �the light species� has a slightly higher density in
the superfluid phases of the phase diagram. In the insulating
phases, on the other hand, the Mott gap protects the particle
number and the relative densities are to a good approxima-
tion equal. Results are presented in Fig. 3 for various ratios
U /U12. For easy comparison with Ref. 14 here z=4 is cho-
sen. In agreement with the fluctuation calculation9 we obtain
a XY-ferromagnetic state when the hopping amplitudes are
comparable. This XY-ferromagnetic domain shrinks if U /U12
becomes larger. For a larger difference between the hopping
amplitudes there is a first order phase transition toward a
Z-antiferromagnetic state. The XY-ferromagnetic to super-

FIG. 3. �Color online� Phase diagram of a two-component bosonic mixture �in an optical lattice with z=4� at total density n1+n2=1 for
different temperatures and ratios of the interspecies to the intraspecies interaction.
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fluid transition is of second order, while on the other hand
the Z-antiferromagnet to superfluid transition is first order,
which is the reason for the large coexistence regions where
both Z-antiferromagnetic order and superfluidity are stable/
metastable, depending on the initial conditions. Within these
metastable regions, patches with ground state spin order will
nucleate into the metastable background. Therefore this
phase will be susceptible to the appearance of quantum
emulsions, as predicted for a one-dimensional Bose-Bose
mixture.21 However, this phenomenon is expected to be
much more prominent in one dimension than in the three-
dimensional situation we consider.

For very anisotropic hopping amplitudes, we predict the
appearance of a supersolid phase. In this supersolid the spe-
cies with the smaller hopping amplitude �for convenience we

take this as species 2, i.e., t1� t2� is insulating: �b̂2�=0,
whereas the other component �i.e., species 1� is superfluid:

�b̂1��0. Moreover the complete system breaks translational
symmetry by developing a spin density wave, in which both
components have alternating high and low on-site densities:
�af

� �0, for �=1,2.
Since the light species breaks the U�1� and translational

symmetries simultaneously, this phase is a true supersolid.
The breaking of the translation symmetry is mediated by the
presence of the heavy species, akin to the situation in a Bose-
Fermi mixture, where supersolid order has been predicted as
well.22,23 The supersolid has a first-order transition to the
superfluid and a second-order phase transition to the Z anti-
ferromagnet. The latter one can be understood as the local-
ization transition of the light component. The supersolid
phase has not been predicted in earlier studies on Bose-Bose
mixtures.9,10 Only very recently it was observed in a quan-
tum Monte Carlo �QMC�-analysis for the two-dimensional
case.14

For nonzero temperatures additional quantum phases ap-
pear �see Fig. 3�. At low temperatures the XY ferromagnet
and Z antiferromagnet in low-hopping regions develop into

an unordered Mott-state with �b̂��= �b̂1
†b̂2�=�af

� =0. The co-
existence regions and insulator-to-superfluid transitions re-
main unaffected. For higher temperatures the XY-insulating
phase is reduced to a small strip between the growing unor-
dered phase and the receding superfluid. The
Z-antiferromagnetic and the AF-SF-coexistence region di-
minish considerably. For certain parameters the counterintui-

tive phenomenon of reentrant superfluidity takes place: the
low-temperature antiferromagnetic phases become superfluid
when the temperature is increased. This is the case because
the superfluid is more stable against temperature fluctuations
than the insulating Z antiferromagnet. If the temperature is
increased in the region of stability of the supersolid, first the
translational symmetry is restored: we obtain a phase in

which only the light component is superfluid ��b̂1�
�0, �b̂2�=0�, but which has no broken translational sym-
metry ��af

� =0� in contrast to the supersolid. We call this
phase monofluid. Upon further increasing the temperature,
also the remaining superfluid order is lost.

C. Rubidium-potassium mixture

Up to now, theoretical calculations were mainly per-
formed for the symmetric parameter choice Ub=Ud. How-
ever, the experimentally at present most relevant Bose-Bose
mixture consisting of 87Rb and 41K generally does not have
this property.3,4 Here we choose the wavelength of the opti-
cal lattice equal to �=757 nm, which yields equal dimen-
sionless lattice depths s=V0 /ER for the two species. ER is the
recoil energy and V0 is the strength of the optical potential,
which is proportional to the product of laser intensity and
atomic polarizability. The ratio of the intraspecies interaction
parameters is then fixed according to URb /UK
=mKaRb /mRbak�0.72. The ratio of the hopping coefficients
is also fixed: tRb / tK=mK /mRb�0.47. This choice of the
wavelength turns out to be sufficiently anisotropic to show
both XY order and antiferromagnetic order, which is not pos-
sible for mixtures of different hyperfine states of the same
atom. Choosing the wavelength far red detuned like in Ref. 3
on the other hand, excludes the XY phase from the phase
diagram, but makes it possible to study the antiferromagnet
and supersolid.

Experimentally, the ratio of intraspecies interaction to in-
terspecies interaction can be tuned via Feshbach-resonances.4

Furthermore the optical lattice depth s can be changed to
tune the ratio URb / tRb. We investigate the resulting s-aRbK
phase diagram at fixed total density nRb+nK=1 by means of
BDMFT, still using the semicircular DOS, but taking now
lattice coordination number z=6 as corresponding to the
three-dimensional situation. Results are shown in Fig. 4. This
mixture displays superfluid, XY-ferromagnetic and

FIG. 4. �Color online� Phase diagram of a 87Rb-41K mixture �for z=6� at fixed total density nRb+nK=1 as a function of lattice depth s
and Rb-K scattering length in units of the Bohr radius.
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Z-antiferromagnetic phases and we also observe the hyster-
esis �metastable� region between superfluid and antiferro-
magnet. For nonzero temperatures and high lattice depths the
unordered Mott-state appears. At the temperature T=2.5
�10−4ER,Rb, �ER,Rb being the recoil energy of rubidium�, the
ordered insulating states are reduced to a small part of pa-
rameter space, which is diminished even further for higher
temperatures. In order to compare this temperature to the
temperatures reached in recent experiments, we consider a
simple model of free bosons that undergo adiabatic time evo-
lution while the optical lattice is ramped up. We obtain an
estimate for the temperature at the relevant lattice depth in
the Florence group that is one order of magnitude larger than
the highest temperature investigate here.3 Recent direct mea-
surements of the temperature of a spinful bosonic mixture in
an optical lattice at MIT have yielded temperatures which
correspond to only twice the highest temperature we
consider.24

The phase diagrams in Fig. 4 are valid for the case of a
shallow harmonic trap, where in the trap center the potential
is very flat. Moreover, the two species need to be equally
distributed in the trap center, which means that the gravita-
tional sag has to be compensated.

IV. CONCLUSIONS

We have derived bosonic DMFT within a 1 /z expansion
and extended the formalism to the full multicomponent

Bose-Hubbard model in finite dimensions. We first validated
the method by applying it to spinless bosons. Qualitative and
quantitative agreement with other methods was established.
Subsequently we investigated a two-component mixture. We
applied the method to a two-component mixture. A rich
phase diagram including spin-ordered and supersolid phases
was found. We furthermore calculated the experimentally
relevant phase diagrams for a 87Rb-41K in an optical lattice at
zero and finite temperature.

Note added. Recently, the BDMFT equations were also
solved for the single-component Bose-Hubbard model in
infinite dimensions, using a similar Anderson Hamiltonian
and the same Exact Diagonalization approach as originally
proposed by us.25
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